
ARTICLE IN PRESS
Journal of Financial Markets 8 (2005) 377–399
1386-4181/$ -

doi:10.1016/j

$I would

I also would

Graham Ellio

Market Micr

2001. The da
�Tel.: +49

E-mail ad
www.elsevier.com/locate/finmar
Duration, volume and volatility impact
of trades$

Simone Manganelli�

European Central Bank, DG-Research, Kaiserstrasse 29, 60311 Frankfurt am Main, Germany

Available online 19 July 2005
Abstract

This paper presents a framework to model duration, volume and returns simultaneously,

obtaining an econometric reduced form that incorporates causal and feedback effects among

these variables. The methodology is applied to two groups of stocks, classified according to

trade intensity. We find that: (1) all stocks exhibit trading volume clustering (which is

significantly higher for frequently traded stocks); (2) times of greater activity coincide with a

higher number of informed traders present in the market only for the frequently traded stocks;

(3) the more frequently traded stocks converge more rapidly (in calendar time) to their long-

run equilibrium, after an initial perturbation.
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1. Introduction

How many trades and how many hours does it take for new information to be
incorporated into prices? In which markets is information revealed faster? Do times
of greater activity coincide with a higher number of informed traders present in the
market? Do we observe a stronger clustering of trading volumes for firms with better
public reporting? And, in particular, do the answers to these questions depend on the
frequency with which stocks are traded? These are the main empirical questions
addressed in this paper.

In theoretical models, trading in financial markets occurs either for information or
for liquidity reasons. Informed agents are motivated by relevant private information
about the real value of the asset not known to the rest of the population. They will
act strategically in the attempt to make a profit out of this information. As a
consequence, both the market maker and the uninformed agents face a learning
problem: how to infer the true value of the traded asset by observing the behaviour
of the other traders. They can learn by looking at market information, such as prices,
volumes or times between trades. Several papers provide precise predictions about
how these variables should be interrelated. In this paper we develop an econometric
framework that can be used to test whether some of these predictions are supported
by the data.

From a statistical point of view, each transaction can be viewed as the realisation
of a stochastic process, whose variables of interest are the time between trades
(duration), prices and volumes. A problem when dealing with ultra-high frequency
data (such as transaction data) is that they are not regularly spaced. Engle and
Russell (1998) suggest tackling this issue by modelling directly the duration between
trades. Zhang et al. (2001) improve upon the original Engle and Russell model by
allowing the expected duration to depend nonlinearly on past information variables.
Bauwens and Giot (2000, 2003) suggest modeling the logarithm of durations.
However, as pointed out by Engle (2002), this solution is not very satisfactory from a
theoretical point of view, because it does not work if there are zeros in the dependent
variable and it imposes implicit constraints on the distribution of the residuals.
Moreover, modeling the logarithm makes it more difficult to study the link between
the random variables of interest and their expectations (since the expectation of the
logarithm is different from the logarithm of the expectation).

There are two main approaches in the empirical microstructure literature to study
the impact of trades: (1) Hasbrouck (1991), who focuses on the dynamics of returns’
first moments, and (2) Engle (2000), focusing on the dynamics of returns’ second
moments. Hasbrouck (1991) uses a vector autoregressive system to model the
interactions among the economic variables of interest, namely prices and signed
volume. Dufour and Engle (2000) incorporate durations in Hasbrouck’s VAR.
While these models provide useful insights about the dynamics of expected returns, it
is not clear how they can be extended to study the interplay between time, volume
and volatility. Since—as we will see in Section 2—–the questions we are interested in
concern exactly the relationship between these three variables, it is important to have
an econometric framework where these relationships can be analysed directly.
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In a different line of research, Engle (2000) incorporates the duration approach of
Engle and Russell (1998) into a volatility framework. He analyses a time series of
IBM stock transactions, suggesting a model of the timing of the trades and
measuring the impact of this timing on price volatility. He also introduces economic
variables—such as bid-ask spreads and large volume dummies—into the volatility
specification, finding significant and positive effects. More recently, Grammig and
Wellner (2002) suggest a model for the interdependence of intra-day volatility and
trade duration processes, whose unknown parameters are estimated via GMM. A
drawback of this approach is that it assumes that returns follow a weak GARCH
model (see Drost and Nijman, 1993). Since in a weak GARCH setting only linear
projections (and not conditional expectations) of the squared innovation process are
considered, the results cannot be strictly interpreted as estimates of conditional
variances.

The econometric contribution of this paper is to extend the approach of Engle
(2000), by elaborating a system where returns and volatilities directly interact with
duration and volume.1 This is accomplished in two steps. First, the modeling idea
behind the Autoregressive Conditional Duration by Engle and Russell (1998) is
extended to model volumes. We treat volumes as a stochastic process and model it
using an autoregressive specification that multiplies an i.i.d. error term. Since volume
can take only positive values, the support of the distribution of the error terms is the
positive real line.

Next, duration, volume and returns are modeled simultaneously, using a special
type of vector autoregression. We allow expected duration, expected volume and
variance of returns to depend on current and lagged values of the variables under
study. In this way, we can build a system that incorporates causal and feedback
effects among these variables. We also construct impulse–response functions that
show how the system reacts to a perturbation of its long-run equilibrium.
The impulse–response function analysis will be helpful to understand market
‘‘resiliency’’, i.e., the speed with which prices tend to converge to the underlying
liquidation value of the asset.

This modeling methodology can be easily extended to incorporate any number of
non-negative variables (such as spreads, the number of transactions or the difference
between high and low prices in any given period). The Multiplicative Error Model of
Engle (2002) provides a framework for multivariate non-negative processes,
generalizing the approach proposed in this paper.

The econometric methodology proposed in this paper is applied to study the
characteristics and long-run equilibrium properties of different markets. The model
is estimated with a sample of ten stocks from the NYSE, which covers the period
from January 1998 to June 1999. The stocks are divided into two groups according
to the intensity with which they are traded. In the empirical analysis, we find strong
evidence that the dynamics of frequently traded stocks differ significantly from those
of the infrequently traded ones.
1Since we are dealing with ultra high frequency data, throughout the paper we use the term volume as a

synonym of trade order size.
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We test three hypotheses, in particular. First, we want to check whether we
observe clustering in trading volumes, as predicted by some microstructure models
(Admati and Pfleiderer, 1988; Foster and Viswanathan, 1990). We find that,
consistent with theoretical predictions, volume is a highly persistent process. That is,
the empirical regularities found for duration and volatility models are confirmed also
for high frequency volumes. In addition, we find that volume autocorrelation (our
measure of persistence) is significantly stronger for more frequently traded stocks.
This finding is consistent with the prediction by Foster and Viswanathan (1990):
informational advantages for firms with better and more frequent public reporting
(proxied by the frequency of trading) are shorter lived, and therefore force informed
traders to trade more aggressively.

Second, our results show that times of greater activity coincide with a higher
number of informed traders present in the market only for the frequently traded
stocks. Results for the infrequently traded stocks show a very weak relationship
between duration, volume and price volatilities. This suggests that the predictions of
Easley and O’Hara (1992) are valid only for frequently traded stocks.

A third interesting finding indicates that the more frequently traded the stock, the
faster the market returns to its full information equilibrium after an initial
perturbation. This result confirms that infrequently traded stocks might be
characterised by a different mechanism of information transmission. In particular,
this is consistent with the theoretical predictions of Holden and Subrahmanyam
(1992), who show that an increase in the number of transactions causes more
information to be revealed earlier. Our results are also consistent with those
provided by Zhang et al. (2001), who find strong evidence that fast and slow
transacting periods have quite different dynamics, although their empirical analysis
is limited to the IBM stock.

The paper is structured as follows. In the next section we discuss the testable
empirical hypotheses derived from existing market microstructure theories. In
Section 3 we introduce our econometric model. Section 4 presents the empirical
results. Section 5 concludes and suggests new directions for future research.
2. The testable hypotheses

There are at least three possible ways through which economic agents can learn
from observing market information: prices, volumes and trade duration. Market
microstructure research has devoted considerable efforts to explaining why and how
these variables interact and can convey information. The basic framework was set up
by Bagehot (1971) and assumes that in the market there exist traders with superior
information who try to transform their informational advantage into net profits. A
common feature of this type of model is that new information is incorporated into
prices through the interaction of informed and uninformed traders. The underlying
assumption is that prices are only semi-strong form efficient, in the sense that they
reflect all public information, but not the private information. If this private
information is valuable, then informed traders can make positive profits. Many
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possible extensions of this basic idea have been considered. See, for example,
Copeland and Galai (1983), Kyle (1985), Glosten and Milgrom (1985), Easley and
O’Hara (1987, 1992), Diamond and Verrecchia (1987), Admati and Pfleiderer (1988).
See O’Hara (1995) for a comprehensive survey.

Although the early microstructure models did not recognise any explicit role for
time and volume, several contributions have now emphasized the impact of the
random arrival of new pieces of information in the information disclosure process.
The general intuition is that market activity and volatility change over time because
new information becomes available to traders at a varying rate. When not much
information is available, trading is slow and there are few price changes. On the
contrary, when new unexpected information hits the markets, trades become more
frequent, volumes increase and prices move much faster. The implication is that
volumes and time between trades influence prices because they are correlated with
private information about the stock’s true value. Since informed traders wish to
trade more frequently and in larger quantities when they have valuable information,
a rational market maker will interpret large orders and short durations as evidence of
trading by informed agents and will adjust beliefs and prices accordingly (Easley and
O’Hara, 1987, 1992). At the same time the lack of trade can be associated with the
fact that no new information exists and that prices efficiently incorporate all
the available information. More precisely, after a period in which no trade occurs,
the market maker updates her beliefs, raising the probability she attaches to the no-
information event and to the prior expected value of the asset (Easley and O’Hara,
1992).

In this paper I will address three specific empirical questions. For each of these
questions, I first briefly discuss the theoretical background and then derive some
testable implications.

Question No. 1: Do we observe clustering in trading volumes?
Admati and Pfleiderer (1988) and Foster and Viswanathan (1990) provide models

to explain time dependent patterns in securities trading. The modeling structure is
the one introduced by Kyle (1985), with a market maker, informed traders and
liquidity traders. Both studies allow the possibility that liquidity traders may have
some discretion regarding the timing of their trading. Admati and Pfleiderer (1988)
show that, in equilibrium, all discretionary liquidity traders choose to trade together.
Therefore, according to their model, we should observe a clustering of trading
volume at some time of the day. Foster and Viswanathan (1990) consider a variation
of this model. They allow new information about the security to arrive in each
trading period. However, this private information advantage is eroded both by the
disclosure of public information and by the market maker’s learning process. These
elements induce informed agents to trade more intensely, thus causing private
information to be revealed more quickly and inducing a clustering in trading
volumes.

Translated into statistical terms, both models predict a strong autocorrelation in
the volume process: high-volume trades tend to be followed by high-volume trades,
and, vice versa, low-volume trades tend to be followed by low-volume trades. In
addition, Foster and Viswanathan (1990) predict that these clustering effects should
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be stronger for firms with better public reporting and more discretionary liquidity
traders. The reason is that for these firms informational advantages are shorter lived,
because they will be eventually eliminated by public announcements. Moreover, the
decision of discretionary liquidity traders to postpone their trading until
the announcement has been released will make it easier for the market maker to
infer the informed agent’s reasons for trading. There are two testable implications of
these models:
(a)
2I

perio

defin

non

circu
volumes should exhibit a certain degree of autocorrelation (trading volume

clustering);

(b)
 volume autocorrelation should be stronger for more frequently traded firms

(assuming, as in Foster and Viswanathan (1993), that the frequency of trading is a

good proxy for the quality of public information).
Question No. 2: Do times of greater activity coincide with a higher number of

informed traders present in the market?
The key intuition of Easley and O’Hara (1992) is that, if time can be correlated

with information about the true value of an asset, then both trade and lack of trade
can convey information to market participants. In particular, agents can learn not
only about the direction of any new information by looking at trades, but also
whether any new information exists by looking at the absence of trades. The main
implication of this analysis is that time is no longer exogenous to the price process. In
addition, volume plays a role. Since trades are positively serially correlated, the
probability of a trade (and therefore the probability of observing a transaction price)
will be positively correlated with volume. The intuition behind this result is that since
informed agents always trade, expected duration will be lower and expected volumes
will be higher after an information event occurs. In other words, the greater the
volume, the less likely the absence of trade and therefore the more likely that new
information exists.2 A consequence of this is that (i) the duration between trades can
affect prices, (ii) duration should be correlated with volume, and (iii) both duration
and volume should be correlated with transaction price variances. The testable
implications of this model are:
(c)
 short durations and high volumes should decrease the expected duration and

increase the expected volume of the next trade;

(d)
 short durations and high volumes should increase the price variance of the next

trade.
Question No. 3: How long does it take for new information to be impounded into prices?
n the model of Easley and O’Hara (1992) agents are allowed to trade only one unit of the asset at each

d. Therefore, they define volume as the cumulative sum of buys and sells up to time t. The use of this

ition of volume would present serious challenges in an empirical analysis, because it would result in a

stationary process interacting with stationary processes, such as duration and volatility. To

mvent this difficulty, in our empirical analysis we use order size instead.
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Holden and Subrahmanyam (1992) develop a multi-period auction model in which
privately informed agents act strategically to exploit their informational advantage.
The basic set up is the one developed by Kyle (1985), who shows that a single
informed trader tends to trade gradually, in order to maximise the benefits deriving
from his monopoly power. Holden and Subrahmanyam (1992) extend this model to
incorporate multiple informed agents and show that they tend to trade more
aggressively than their monopolist counterparts. The driving element of this result is
the competition between informed traders. At the limit, as the number of traders
goes to infinity, all their private information is revealed immediately. The same result
holds with just two informed traders, as the number of auctions (i.e., trades)
increases and tends to infinity. They illustrate the difference between the imperfectly
competitive case and the monopolist case with a series of numerical simulations. In
Fig. 2, they show how price variance declines very rapidly to zero through time. As
the number of trades increases, the speed with which it drops increases very sharply.
The testable implication of this model is the following:
(e)
3S

Jone
price variance of frequently traded stocks should converge more rapidly than that

of infrequently traded stocks to their long run equilibrium, after an initial

perturbation;
Answers to this last question might have considerable practical relevance.
Theoretical models show that prices do eventually converge to full information
values. However, this convergence takes place only at the limit and not much is said
about how long this adjustment process takes. Knowing the speed at which new
information is incorporated into prices might shed some light on the nature of
market efficiency. In addition, research along these lines can yield new insights on
how the institutional features of different markets contribute to the attainment of
this type of efficiency.
3. Econometric methodology

When studying market microstructure, a major problem faced by the econome-
trician is that transaction data arrive at irregular times. The practice has been to
ignore the time occurring between two trades and analyze the data with fixed time
interval econometric techniques, in many cases by taking averages of the values of
interest over a given, arbitrary interval.3 However, as the previous discussion points
out, there might be a significant loss of information by adopting this modeling
strategy, since the time elapsing between two trades may be informative about the
behaviour of the traders.

The Autoregressive Conditional Duration (ACD) model of Engle and Russell
(1998) provides a solution to this problem. Engle and Russell model the arrival times
ee, for example, Hartmann (1999), Fleming and Remolona (1999), Ederington and Lee (1993),

s et al. (1994).
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of trades as random variables that follow a point process. Associated with each
arrival time are random variables called marks, such as volume, spread and price. It
is often the case that the variables of interest are those in the marks, for example the
price and the volatility of the asset under study. The objective of this paper is to
model explicitly the components of the mark and to construct a general framework
to study the interaction among them.

Let dt ¼ zt � zt�1 be the duration between two consecutive trades, where zt

denotes the time of the tth transaction. At the tth transaction, the tth mark xt is
realised. Typically, xt will be a vector containing the price and the volume of the
transaction, plus the bid-ask spread posted by the market maker. These data can be
viewed as the sample realization from a hypothetical stochastic process. We assume
that the true DGP generating each pair ðdt;xtÞ can be written as follows:

ðdt;xtÞ�f ðdt; xtjOt; yÞ, (1)

where Ot denotes the information available at time t and y is a (finite) vector of
parameters of interest.

Engle (2000) points out that this joint density can be rewritten as the product of
the marginal density of d times the conditional density of x given d. Assuming that
the marks of interest are just returns (y) and volume (v), we can write the conditional
density of x given d as the marginal conditional density of v given d times the density
of y conditional on d and v:

ðdt; vt; ytÞ�f ðdt; vt; ytjOt; yÞ

¼ gðdtjOt; y1Þ � hðvtjdt;Ot; y2Þ � kðytjdt; vt;Ot; y3Þ. ð2Þ

Although other parameterizations are possible, the one proposed here seems
natural, given the widespread use of strategic models in the market microstructure
literature. In Kyle’s (1985) model, for example, insider traders act strategically, i.e.,
they take into account the effect their orders have on price, by conditioning on the
behavior of both the market maker and uninformed traders. At the moment in which
new private information becomes available, informed traders face a given supply/
demand schedule from the market maker. They will thus choose the amount of
shares to trade in order to maximise their informational advantage, discounting the
market maker reaction to their trade. Since the timing of the trade as well can convey
information to the market maker (see Easley and O’Hara, 1992), informed traders
will take this aspect into account also when determining the timing of their trades.
This implies that both duration and volume will determine the price at time t.
A similar argument can be used regarding the relationship between duration and
volume. When new private information arrives, the informed trader would like to
exploit it by trading a larger amount of shares. However, by following this strategy
she would immediately reveal herself to be an informed trader and the market maker
would adjust prices accordingly. In order to hide her type, the informed trader will
split her buy and sell orders in many trades. It is then this trading intensity that
determines the amount of shares to be sold or bought at each trade. These arguments
support the parameterization used in (2), suggesting a plausible causality relation
running from duration to volume and from duration and volume to prices.
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By modeling each marginal and conditional distribution in (2), it is possible to
develop a complete framework for the triple ðdt; vt; ytÞ. As discussed in Section 2
economic theory suggests that clusters of activity should be observed in the market
every time some unexpected piece of information arrives. In terms of duration, this
translates in periods in which we observe very frequent transactions, with very short
durations. The ACD models pick up this aspect.

The typical ACD model can be stated as follows:

dt ¼ ct�t; �t�i:i:d:ð1;s2� Þ

ct � EðdtjOt; ydÞ; ð3Þ

where Ot is, as usual, the information available at time t, and yd is a vector of
parameters that need to be estimated.

Since ct is the expectation of dt, �t must be a random variable with mean 1.
Moreover, both ct and the support of the distribution of �t must be positive, as
duration cannot be negative. Engle and Russell (1998) suggest modeling ct as an
autoregressive process. This choice is reasonable, as the autoregression can be
interpreted as the statistical way to model the clustering of activity discussed above.
Moreover, autoregressive processes are consistent with the fact that the whole
sequence of past trades might become informative. Pushing along these lines, it
seems plausible to model volume in a similar fashion. A possible model for volume
could be the following:4

vt ¼ ftZt; Zt�i:i:d:ð1;s2ZÞ

ft � EðvtjOt; yvÞ: ð4Þ

As in the ACD model, Zt must be an i.i.d. error term with mean 1. Since
volume is a variable that assumes only positive values, the distribution of the error
term will be defined only for positive values. By imposing different distributional
assumptions on this error term and specifying the process followed by the expected
volume ft, we can get a variety of models. Moreover, the quasi-maximum likelihood
results of GARCH and ACD models can be directly extended to this model:
imposing an exponential distribution for Zt, it is possible to obtain consistent
estimates of the parameters yv, provided that the expected volume ft is correctly
specified.5

Given the predictions of economic theories and the known empirical regularities
that characterize durations and volatilities, we model expected volume as an
autoregressive process. To stress the analogy with duration and volatility models, we
call these models autoregressive conditional volume (ACV). The simplest possible
4Here we assume that volume is a stationary process. In practice, however, volume might have a

tendency to increase over time. For example, while the average daily trading volume in the broad-based

S&P 500 index was around 190 million shares back in 1993, it has since increased steadily to around 1.5

billion shares in 2000. Given the relatively short sample period used in our empirical analysis, this is

unlikely to create any problem. Nevertheless, when longer time series are studied, one might want to take

this aspect into consideration when data are cleaned for the analysis.
5See Bollerslev and Wooldridge (1992) and Engle and Russell (1998) for details.
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specification is an ACV(1,1):

ft ¼ oþ avt�1 þ bft�1. (5)

Other more general ACV specifications can be introduced. However, instead of
pursuing this strategy, we propose a more general approach. Modeling the returns
with a GARCH process whose mean and variance are denoted by mt and s2t , and
specifying a model for each of the marginal and conditional density functions in (2),
we can get a complete and general framework for the random variables of interest.
More precisely, we assume the following:

dt ¼ ctðyd ;OtÞ�t; �t�i:i:d:ð1;s2� Þ

vt ¼ ftðyv; dt;OtÞZt; Zt�i:i:d:ð1;s2ZÞ

yt ¼ mt þ stðyy; dt; vt;OtÞzt; zt�i:i:d:ð0; 1Þ. ð6Þ

Note that in this framework the error terms are uncorrelated with each other by
construction. Taken separately, these are, respectively, the ACD, ACV and GARCH
models. However, under this framework it is possible to allow interactions among
the three variables under study.6 According to how we specify the functional forms
for expected duration, expected volume and variance, we can get many different
models and construct an econometric reduced form to evaluate the theoretical
predictions from market microstructure. One possible specification is the following:

ct ¼ a0 þ
Xq

i¼1

ða1ict�i þ a2ift�i þ a3is2t�iÞ þ
Xp

j¼1

ða4jdt�j þ a5jvt�j þ a6jy
2
t�jÞ,

ft ¼ b0 þ
Xq

i¼1

ðb1ict�i þ b2ift�i þ b3is2t�iÞ þ b4dt

þ
Xp

j¼1

ðb5jdt�j þ b6jvt�j þ b7jy
2
t�jÞ,

s2t ¼ c0 þ
Xq

i¼1

ðc1ict�i þ c2ift�i þ c3is2t�iÞ þ c4dt þ c5vt

þ
Xp

j¼1

ðc6jdt�j þ c7jvt�j þ c8jy
2
t�jÞ. ð7Þ

The nice feature of this specification is that it has a vector autoregressive moving
average representation. Indeed, rewriting (7) in matrix form, we get, in more
compact notation:

wt ¼ gþ A1wt�1 þ � � � þ Aqwt�q þ B0tt þ B1tt�1 þ � � � þ Bptt�p, (8)
6Model (6) provides a link between Hasbrouck (1991) and Engle (2000), the two approaches discussed in

the introduction. By incorporating the trade sign into the specification of mt and adding an extra equation

for the trade sign, it is possible to merge into a single empirical specification the approaches of Hasbrouck

(1991) and Engle (2000). I am grateful to an anonymous referee for pointing this out.
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where w0t ¼ ðct;ft;s
2
t Þ, t

0
t ¼ ðdt; vt; y2

t Þ, g is a (3,1) vector of coefficients and A1; . . .Aq,
B0;B1; . . . ;Bp are (3,3) matrices of coefficients.

To keep things simple, in this paper we concentrate our attention on a first order
model of (8):

wt ¼ gþ Awt�1 þ Btt þ Ctt�1. (9)

The parameterization in (2) imposes that B is lower diagonal with all the elements on
the diagonal equal to zero. Further restrictions can be imposed. For example, by
imposing that A and C are diagonal and B is equal to zero, we get back the three
independent models ACD, ACV and GARCH. Note that assuming that A is
diagonal is equivalent to assuming that the parameters of this system are variation
free as in Engle et al. (1983). Under this assumption, the likelihood in (2) can be
rewritten as

f ðdt; vt; ytjOt; yÞ ¼ gðdtjOt; ydÞ � hðvtjdt;Ot; yvÞ � kðytjdt; vt;Ot; yyÞ, (10)

where y0 ¼ ðy0d ; y
0
v; y

0
yÞ. This makes it possible to estimate the three models separately.

The VAR system in (8) will be covariance stationary if and only if jljo1 for all
values of l satisfying jInl

p
� H1l

p�1
� H2l

p�2
� � � � Hpj ¼ 0, where Hi ¼ ðB0 � IÞ�1

�ðBi þ AiÞ, i ¼ 1; . . . ; p.
The model described by (6) and (9) allows one to compute the effect that an

unexpected trade today has on future expected duration, volume and volatility.
Suppose the system is in steady state at w0 ¼ ðI � A � B � CÞ

�1g. Then the
impulse–response function of the model (6) and (9) for t40 is qEðwtjO0Þ=
qx00 � Ft ¼ Dt�1ðI � BÞ�1

ðAB þ CÞdiagðw0Þ, where D ¼ ðI � BÞ�1
ðA þ CÞ, and

x00 � ð�0; Z0; z0Þ.
7

The standard errors for the impulse–response can be computed as follows. Let

y
ðp�1Þ

¼ ½y0d ; y
0
v; y

0
y

0, kt

ð9�1Þ
� vecðFtðyÞÞ and

ffiffiffiffi
T

p
ðŷ� yÞ!

a
Nð0;QÞ. Then, under stan-

dard regularity conditions,
ffiffiffiffi
T

p
ðk̂t � ktÞ!

a
Nð0;GtQG0

tÞ, where Gt
ð9�pÞ

¼ qkt

qy0 . The ith

column of the matrix of derivatives Gt can be easily estimated numerically by

Gi
t ¼ ½ktðŷþ eiDÞ � ktðŷÞ
=D, where ei denotes the ith column of the (p� p) identity

matrix and D is a small number.
4. Empirical analysis

4.1. Data

The econometric models discussed in the previous section were tested on a sample
of ten stocks. The data are taken from the Trades and Quotes (TAQ) database. All
stocks are quoted in the NYSE and cover the period from January 1, 1998 to June
30, 1999. They were randomly chosen using the following procedure. We constructed
7See Proposition 2 of Manganelli (2002) for a derivation of this result.
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Table 1

Stocks used in the analysis

A. Frequently traded B. Infrequently traded

CP CDN PACIFIC DTC DOMTAR INC

GAP GREAT A & P FTD FORT DEARBN INCM

COX COX COMMUNICATION GBX GREENBRIER CO

DLP DELTA & PINELAND GSE GUNDLE/SLT ENV

AVT AVNET INC JAX J ALEXANDERS
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ten deciles on the basis of the 1997 total number of trades of all the stocks quoted on
the NYSE. Then we randomly picked five stocks from the eighth decile and five from
the second decile. All the stocks that didn’t survive the whole period of study were
discarded and substituted by other randomly chosen stocks from the same decile.
The tickers and names of the ten stocks are reported in Table 1.

To prepare the data for the analysis, first we dropped any transaction that
occurred before the opening time, 9:30 am, and after the closing time, 16:00. Then,
we computed the durations between trades treating the overnight period as if it
didn’t exist, so that, for example, the time elapsing between 15:59:30 and 9:30:10 of
the following day is only 40 seconds. We adopted this strategy because in our sample
we have stocks that are very rarely traded. Eliminating the durations for the
overnight period would have caused the loss of important data for these stocks.
Third, we computed the price of each transaction as the average of the bid and ask
quotes that appear at least five seconds before the transaction itself. This procedure
is standard in market microstructure studies. Taking the average of the bid and ask
quotes limits the bid-ask bounce problems, while considering only 5 seconds old
quotes was originally proposed by Lee and Ready (1991) and its purpose is to correct
reporting errors in the sequence of trades and quotes.8 Fourth, we eliminated all the
transaction data with zero duration. We treated these transactions as one single
transaction, summing up all the volumes. Fifth, we adjusted the data for stock splits,
by multiplying prices and volumes by the stock split ratio. Sixth, the returns were
computed as the difference of the log of the prices. Seventh, we adjusted the data for
dividend payments and trading halts, by simply deleting the first observation whose
return incorporated the dividend payment or the trading halt.

It is a well-known fact that both durations and volatilities exhibit a typical daily
pattern over the course of the trading day, with very high trading activity at the
beginning and at the end of the day. In order to remove this feature from the data,
the time series of durations, prices and volumes were diurnally adjusted as in Engle
8In the following empirical analysis, all the variables of interest are measured whenever a transaction

occurs. However, in the real world, there is a difference between a transaction and a print. Consider, for

example, a 1000-share market order for which the specialist takes 600 shares and the rest is passed onto the

limit order book. This will show up in the TAQ data set as two prints, but in fact it was just one

transaction with three counterparties. This is a limitation of the data set that is hard to overcome. The only

way to get around this problem is use order data, which are rarely available.



ARTICLE IN PRESS

Table 2

Summary statistics for the ten stocks used in the analysis. The sharp difference between the number of

trades for the two groups of stocks reflects the selection criteria used. Notice that this difference is reflected

in the average and median duration, but not in volume.

Ticker # Obs
Duration Volume

Average Median Average Median

DLP 65304 134.15 45 1483.84 500

GAP 46826 187.3 80 827.03 300

CP 71672 122.43 65 2978.55 500

COX 88917 98.6 35 2692.57 800

AVT 58389 150.02 64 1075.55 400

JAX 2761 3165.7 1032 1002.32 500

GSE 1968 4438.42 1523 1523.53 600

GBX 5154 1695.49 620 1483.95 500

FTD 3264 2416.44 1390 736.95 500

DTC 4161 2094.22 526 2143.91 800
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(2000). We regressed durations, volumes and absolute values of returns on a
piecewise linear spline with knots at 9:30, 10:00, 11:00, 12:00, 13:00, 14:00, 15:00,
15:30 and 16:00 and constructed the adjusted series by dividing each original series
by the spline forecast. The two extra knots in the first and last half-hour reflect the
typical different trading intensity during the day. Less frequently traded stocks, in
general, do not exhibit any regular pattern during the day. More frequently traded
stocks, instead, are characterised by the typical inverted U pattern for duration, an L
pattern for absolute returns (i.e., high absolute returns at the opening and flat shape
during the rest of the day), and no regular pattern for volume.

Throughout the empirical section, we concentrate our attention on volume and
variance per transaction. Even if volatility per unit of time is the natural and
commonly used measure of volatility, in market microstructure we observe only
transaction data. Transforming these data into per unit data would bias the analysis.
Indeed, some of the theories predict that the absence of trade must be interpreted as
if bad news has arrived, and hence trades with longer durations should have a higher
price impact, measured in transaction (not calendar) time. In this case, if we divide
returns by the square root of the durations (in order to get volatility per second), the
price impact of the transaction will be considerably reduced, since long durations will
almost always be associated with low returns per second.

In Table 2 we report some summary statistics for the ten stocks used in the
analysis. For each stock we report the number of observations, and average and
median of duration and volume. The sharp difference between the number of
observations for the two groups of stocks reflects the criteria used to select them. It is
interesting to note that this difference is reflected in the average and median duration
of the trades, but not in the volumes, whose average magnitude seems comparable
across the two groups of stocks.
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Table 3

Autoregressive coefficients (b ) of the three models for duration, volume and trade variance

� dt ¼ ct�t; �t�i:i:d:ð1;s2� Þ

ct ¼ oþ adt�1 þ bct�1.

� vt ¼ ftZt; Zt�i:i:d:ð1;s2ZÞ

ft ¼ oþ avt�1 þ bft�1.

� yt ¼ stzt; zt�i:i:d:ð0; 1Þ

s2t ¼ oþ ay2t�1 þ bs2t�1

These models were estimated imposing the strong exogeneity assumption. In terms of the notation

developed in the paper, we set the matrix B equal to zero and imposed the matrices A and C to be dia-

gonal. Standard errors are omitted, because all the coefficients were statistically significant at the 1%

confidence level.

Ticker ACD ACV GARCH

DLP 0.9324 0.9525 0.9618

GAP 0.9521 0.9726 0.9658

CP 0.9651 0.9707 0.9583

COX 0.9373 0.9718 0.9505

AVT 0.8950 0.9154 0.9508

JAX 0.9533 0.7163 0.9072

GSE 0.8303 0.8496 0.9493

GBX 0.9295 0.7154 0.9149

FTD 0.8764 0.2925 0.9487

DTC 0.8857 0.8004 0.9519
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4.2. Results

Question No. 1: Do we observe clustering in trading volumes?
First we estimated the three independent ACD, ACV and GARCH models. In

terms of the general model described in the previous section, we set the matrix B

equal to zero and impose the matrices A and C to be diagonal. In Table 3 we report
the estimated autoregressive coefficients (the diagonal elements of A) of the three
models. All these coefficients are highly significant. We omit to report the t-statistics
in order to present a cleaner picture of the results.

This exercise is novel in two aspects. First the ACV model is estimated and second
these models are estimated with two groups of stocks, frequently and infrequently
traded stocks. Volume appears to be a very persistent process for the frequently
traded stocks, as indicated by the autoregressive coefficients, which are always above
0.9, and above 0.95 for four out of five stocks. This finding confirms that the
empirical regularities found for duration and volatility models hold for volume as
well. It is also consistent with the predictions of market microstructure theories,
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according to which markets should be very active every time an unexpected piece of
information arrives or when there is a clustering of liquidity traders.9 The
persistence, however, is significantly lower for the five less frequently traded stocks.
Here the autoregressive coefficient drops to 0.7–0.8, and down to 0.3 in one case.
This is a first piece of evidence that the dynamics of frequently traded stocks differ
significantly from those of infrequently traded stocks. Looking also at the ACD and
GARCH models, we notice an analogous drop in the level of the autoregressive
coefficients for the infrequently traded stocks, but much less dramatic. This provides
empirical evidence in favour of the hypotheses (a) and (b) described in Section 2.
Volume does exhibit a certain degree of autocorrelation, as predicted by the models
of Admati and Pfleiderer (1988) and Foster and Viswanathan (1993). Moreover,
given that frequently traded stocks are also more likely to be characterized by better
disclosure of public information, the higher clustering of trading volumes for
frequently traded stocks is consistent with the insights of Foster and Viswanathan
(1993): since private information advantage is shorter lived for frequently traded
stocks, informed agents will try to trade more intensively, thus inducing a greater
clustering in trading volume.

Question No. 2: Do times of greater activity coincide with a higher number of

informed traders present in the market?
With only this framework at hand, it is not possible to address question 2. We

need models that allow interactions among the three variables under study. In the
estimation, we imposed the assumption of weak exogeneity (that is we assume that
the matrix A in (9) is diagonal), so that the optimization could be done separately for
each variable, and we estimated the following model:

ct ¼ a0 þ a1ct�1 þ a2dt�1 þ a3vt�1 þ a4m2t�1,

ft ¼ b0 þ b1ft�1 þ b2vt�1 þ b3dt þ b4dt�1 þ b5m2t�1,

yt ¼ X 0
tbþ ut; ut ¼ rut�1 þ mt þ ymt�1;

s2t ¼ c0 þ c1s2t�1 þ c2m2t�1 þ c3dt þ c4dt�1 þ c5vt þ c6vt�1:

����� ð11Þ

In (11) we model the mean of yt as an ARMA(1,1). The vector Xt contains current
and lagged values of dt and vt. We don’t report the results for the mean because our
interest lies principally in the second moment dynamics.

In Table 4 we report the Ljung–Box statistics with 15 lags for raw and fitted data
for duration, volume and returns. The statistics for the raw data are overwhelmingly
significant, indicating the existence of strong autocorrelation in the variables. The
analysis of the LB statistics for the residuals of the fitted models reveals that these
models succeed in capturing most of the autocorrelation, as indicated by the sharp
drop in value of the statistic. In some cases, the Ljung–Box statistic is still significant,
but this is common with such large time series (see, for example, Engle, 2000).
9Although the persistence of volume at the ultra high frequency level is a new finding in the empirical

literature of market microstructure, similar evidence was found by Hartmann (1999) who shows how the

log of daily foreign exchange market trading volumes displays conditional heteroscedasticity.
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Table 4

Ljung–Box (LB) statistics for raw data and fitted residuals. The fitted residuals are obtained from

estimation of the full model of Eq. (12).

� ct ¼ a0 þ a1ct�1 þ a2dt�1 þ a3vt�1 þ a4m2t�1,

� ft ¼ b0 þ b1ft�1 þ b2vt�1 þ b3dt þ b4dt�1 þ b5m2t�1,

� yt ¼ X 0
tbþ ut; ut ¼ rut�1 þ mt þ ymt�1;

s2t ¼ c0 þ c1s2t�1 þ c2m2t�1 þ c3dt þ c4dt�1 þ c5vt þ c6vt�1:

�����

The sharp drop in value of the LB statistics reveals that this model successfully captures most of the

autocorrelation present in the raw data.

Duration Volume Return (mean) Return (variance)

LB Raw LB Fitted LB Raw LB Fitted LB Raw LB Fitted LB Raw LB Fitted

CP 3704.96 118.07 2513.63 31.94 376.17 12.18 3610.92 15.09
GAP 5052.96 56.16 357.02 58.16 45.78 19.62 3539.06 42.14
COX 30163.28 87.65 361.96 25.19 864.21 15.10 694.16 48.29
DLP 20027.87 114.03 2010.17 84.81 604.70 16.16 7922.59 65.76
AVT 6781.75 80.10 484.38 36.14 484.07 12.69 659.27 39.54

DTC 161.73 10.46 401.08 10.80 78.68 15.66 182.09 11.38
FTD 17.68 10.63 82.88 22.63 46.89 33.67 326.16 9.82
GBX 1023.15 15.05 389.99 12.25 31.09 13.84 77.60 11.79
GSE 85.56 6.81 82.69 25.89 37.77 18.77 71.15 15.57
JAX 104.33 7.50 95.01 14.84 31.66 17.46 330.35 11.84
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To evaluate the effect that duration and volume have on prices, we need to look at
their lagged values, because we are interested in the reaction of the market maker to
the last trade. For this purpose, we need to take into account the effect that lagged
duration and volume have on lagged expected volume and variance per trade.
Rewriting (11) in matrix form as in (9), we get:

wt ¼ gþ Awt�1 þ Btt þ Ctt�1

¼
Xt�1

k¼0

Akgþ Btt þ
Xt�1

k¼1

Ak�1ðAB þ CÞtt�k þ At�1Ct0 þ Atw0. ð12Þ

The matrix of coefficients of tt�1 is ðAB þ CÞ and the null hypothesis that these
coefficients are equal to 0 can be easily tested as shown at the end of Section 3. The
results are reported in Table 5.

Let’s start by looking at the variance equations. The coefficient of lagged duration
in the variance equation is negative for 8 out of 10 stocks, but significant only in four
cases. The sign of the duration coefficient is consistent with the results typically
found in the empirical microstructure literature (see, for example, Engle, 2000;
Dufour and Engle, 2000) and suggest that times of greater activity coincide with a
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Table 5

Coefficients of the matrix (AB +C). These coefficients indicate the effect that lagged values of duration, volume and squared trade returns have on expected

variables. Bollerslev–Wooldridge robust t-statistics in parenthesis. Variables significant at the 1% confidence level formatted in bold. The asterisk denotes

significance at 5%.

CP GAP COX DLP AVT

dt�1 vt�1 m2t�1
dt�1 vt�1 m2t�1

dt�1 vt�1 m2t�1
dt�1 vt�1 m2t�1

dt�1 vt�1 m2t�1

ct 0.0274 �0.0004 �0.0001 0.0450 �0.0013 �0.0001 0.0608 �0.0006 �0.0002 0.0679 �0.0026 �0.0006 0.0876 �0.0007 �0.0007

(23.90) (�2.79) (�3.19) (27.50) (�3.37) (�1.12) (44.70) (�6.74) (�3.48) (39.30) (�5.36) (�2.90) (36.08) (�1.61) (�7.38)

ft �0.0011 0.0227 0.0001 �0.0037 0.0190 �0.0001 0.0009 0.0241 0.0000 0.0002 0.0408 0.0001 0.0028 0.0519 �0.0004

(�1.55) (12.00) (0.36) (�4.10) (10.40) (�3.14) (1.34) (13.60) (�0.17) (0.33) (17.30) (1.60) (1.52) (11.29) (�1.58)

s2t �0.0432 0.0195 0.0421 �0.0043 0.0198 0.0390 �0.0161 0.0114 0.0407 �0.0033 0.0013 0.0399 �0.0174 0.0017 0.0373

(�15.1) (3.68) (17.30) (�0.88) (4.27) (14.30) (�5.54) (4.91) (21.40) (�1.18) (0.44) (9.31) (�3.60) (0.54) (14.55)

DTC FTP GBX GSE JAX

dt�1 vt�1 m2t�1
dt�1 vt�1 m2t�1

dt�1 vt�1 m2t�1
dt�1 vt�1 m2t�1

dt�1 vt�1 m2t�1

ct 0.0850 0.0001 �0.0009 0.032* �0.0430 �0.0020 0.0679 0.0000 0.0003 0.0964 �0.0089 �0.0021 0.0388 �0.0012 �0.0002

(8.05) (0.03) (�1.26) (2.29) (�46.9) (�1.51) (10.03) (0.03) (0.8) (4.71) (�1.59) (�8.30) (5.92) (�0.62) (�0.67)
ft �0.0110 0.1210 0.0003 �0.0203 0.1190 �0.0018 �0.0087 0.1429 0.0004 0.0012 0.0988 0.0016 �0.0078 0.1530 0.0064

(�1.58) (2.33) (0.19) (�1.65) (5.02) (�0.98) (�1.33) (5.74) (0.21) (0.18) (4.90) (0.99) (�0.91) (5.06) (1.09)
s2t 0.045* 0.0381 0.0650 �0.04* 0.068* 0.0424 �0.0010 0.0004 0.0588 0.0038 0.0282 0.0486 �0.0521 0.029* 0.0632

(2.30) (1.90) (4.24) (�1.96) (2.25) (5.49) (�0.13) (0.11) (5.2) (0.17) (1.53) (3.94) (�7.61) (2.06) (7.25)
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higher fraction of informed traders present in the market. The existing results,
however, are limited to very liquid blue chip stocks.

The volume coefficient is always positive, but strongly significant only for the
frequently traded stocks. This supports some of the predictions of Easley and
O’Hara (1987, 1992), for example suggesting that trades with larger sizes are more
likely to be executed by informed traders and thus have a greater impact on the price
of the stock.

A very different picture emerges from the results for the infrequently traded
stocks. Our findings provide evidence against the robustness of the above results,
when the analysis is extended to less frequently traded stocks. In this case neither
duration nor volume affect the variance. Thus the relationships among trading
intensity, trade sizes and volatilities predicted by hypothesis (d) do not find
confirmation for the less frequently traded stocks.

A second striking difference between the two groups of stocks is found in the
duration equation. For the frequently traded stocks, both lagged volumes and
squared returns affect the expected duration of the next trade. The signs of the two
variables are always negative, implying that more frequent trading follows big price
movements and high volumes. These results confirm those of Dufour and Engle
(2000), who found that ‘‘short durations and thus high trading follow large returns
and large trades,’’ extending them to incorporate volume as well. However, the
coefficients for the infrequently traded stocks are almost never significant. This
suggests that the exogeneity of the trade arrival process imposed by Dufour and
Engle (2000) and by some theoretical models may be a reasonable assumption only
when dealing with infrequently traded stocks.

In the volume equation, only lagged volume is strongly significant, with lagged
durations and squared returns playing practically no role for all the ten stocks.
Therefore, we can conclude that hypothesis (c) finds partial confirmation only for
frequently traded stocks.

The weak exogeneity assumption imposed in (11) could be restrictive, although
this strategy has been adopted in a similar context by most empirical microstructure
papers. As a robustness check, in Table 6, we test this restriction as suggested by
Dufour and Engle (2000). We regress the standardized residuals of the three models
against lagged expected variables. More precisely, we run the following three
regressions:

�̂t ¼ a0 þ a1f̂t�1 þ a2ŝ
2
t�1,

Ẑt ¼ b0 þ b1ĉt�1 þ b2ŝ
2
t�1,

m̂t

ŝ2t
¼ g0 þ g1ĉt�1 þ g2f̂t�1.

If the model was correctly specified, then the standardised residuals should be i.i.d,
and the estimated coefficients of the above regressions should not be significantly
different from zero. On the other hand, if the expected variables belong to the model,
then we should find significant correlation between the estimated residuals and the
omitted variables. White (1980) type standard errors are reported in parentheses.
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Table 6

Tests for omitted variables. We regressed the standardised residuals from model (12) on lagged expected

variables:

�̂t ¼ a0 þ a1f̂t�1 þ a2ŝ2t�1,

Ẑt ¼ b0 þ b1ĉt�1 þ b2ŝ
2
t�1,

m̂t

�
ŝ2t ¼ g0 þ g1ĉt�1 þ g2f̂t�1.

White robust t-statistics in parenthesis. Variables significant at the 1% confidence level are formatted in

bold. The asterisk denotes significance at 5%.

Exp Dur Exp Vol Volatility

c Exp Vol Volatility c Exp Dur Volatility c Exp Dur Exp Vol

CP 1.0068 0.0153* �0.0050 0.9473 0.0228 0.0069 1.2054 �0.0846 �0.1136

(104.49) (2.13) (�3.33) (17.70) (0.49) (1.70) (19.99) (�1.46) (�6.23)
GAP 0.9737 0.0004 0.0253 1.0011 0.0028 �0.0010 1.3936 �0.1096 �0.2840

(44.58) (0.16) (1.23) (29.53) (0.10) (�0.42) (15.18) (�2.40) (�5.88)
COX 0.9985 0.0123* �0.0027* 0.9676 0.0077 0.0059 1.0783 0.0082 �0.0800

(120.59) (2.05) (�2.16) (29.13) (0.30) (1.49) (45.57) (0.48) (�6.46)
DLP 1.0079 �0.0019* �0.0005 1.0165 �0.0140 �0.0005 1.0682 �0.0264 �0.0284

(81.09) (�2.31) (�0.04) (67.34) (�1.03) (�0.52) (12.27) (�1.33) (�0.55)
AVT 0.9944 0.0054 0.0000 1.0259 �0.0075 �0.0051 1.0851 �0.0212 �0.0546*

(67.13) (0.53) (0.01) (28.64) (�0.29) (�0.91) (24.91) (�0.70) (�2.01)

DTC 1.0129 0.0034 �0.0052 0.9948 �0.0018 0.0023 1.0260 0.0166 �0.0426

(21.68) (0.10) (�0.46) (9.72) (�0.02) (0.12) (9.36) (0.17) (�2.96)
FTD 0.9831 0.0427 �0.0054 0.5641 0.3732 0.0181* �0.5320 0.4833 1.0702

(8.73) (0.39) (�0.61) (2.52) (1.76) (2.21) (�0.47) (0.65) (2.39)
GBX 1.0209 �0.0246 0.0010 1.0076 �0.0291 0.0061 1.0299 0.0329 �0.0636*

(27.26) (�1.15) (0.15) (15.20) (�0.46) (0.60) (11.80) (0.50) (�2.14)
GSE 0.9708 0.0185 0.0023 1.2034 �0.1797 �0.0059 1.1413 �0.0570 �0.0783

(13.77) (0.26) (0.16) (7.29) (�1.37) (�0.37) (4.32) (�0.28) (�0.77)
JAX 1.0095 0.0298 �0.0129 1.0518 �0.0622 0.0037 0.9273 0.1236 �0.0496

(17.29) (0.66) (�1.08) (8.70) (�0.68) (0.16) (6.27) (0.97) (�1.15)
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The results show that the coefficients of the lagged expected variables are almost
never significantly different from zero, especially for the infrequently traded stocks.
Only the test for the variance specification shows evidence of misspecification for the
frequently traded stocks, suggesting that lagged expected volume should also be
taken into consideration.

Question No. 3: How long does it take for new information to be impounded into

prices?
We can use our framework to compute the impulse–responses in calendar time,

by using the formula derived at the end of Section 3. Since we are modeling
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Fig. 1. Impulse–response function for COX in calendar time (hours).
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simultaneously duration, volumes and volatility, it is possible to keep track of the
expected duration at each transaction t.10 By progressively cumulating these
durations, one can compute the expected timing of all future transactions.
Obviously, the path of expected duration depends on the variable we decide to
shock initially. In Figs. 1 and 2 we report the impulse–response functions for COX
and JAX expressed in calendar time. Each expectation at time t (expected duration,
expected volume and price variance) is plotted against the cumulative sum of the
corresponding expected duration. It is interesting to note the striking similarity
between these empirical impulse–responses and the simulated ones reported in Fig. 2
of Holden and Subrahmanyam (1992). Consistently with the theoretical predictions
of their model, the speed with which price variance declines to zero after an initial
shock increases dramatically with the trading frequency. Table 7 summarizes
the results for the other stocks, confirming that the price variance of
10Since when cleaning the data we had diurnally adjusted the series (see Section 4.1), we put back in the

system the unconditional means of the original series before computing the impulse–responses.
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Table 7

Time (in hours) it takes to absorb shocks to the long term equilibrium variances

AVT COX CP DLP GAP

Shock to duration 20 101 32 143 117

Shock to volume 21 108 53 156 105

Shock to volatility 15 23 13 76 21

DTC FTD GBX GSE JAX

Shock to duration 164 264 2782 946 1006

Shock to volume 137 245 1611 1039 653

Shock to volatility 106 156 1398 880 506

Fig. 2. Impulse–response function for JAX in calendar time (hours).

S. Manganelli / Journal of Financial Markets 8 (2005) 377–399 397
frequently traded stocks converges much faster to its long-run equilibrium
after an initial perturbation.11
11The threshold at which the shock producing the impulse–response is assumed to be absorbed is at

1e�7 for shocks to z0 and at 0.001 for shocks to �0 and Z0. That is, Table 7 reports the time it takes for the

impulse–response of the variance to fall below 1e�7.
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5. Conclusion

In this paper, we modeled the interaction between expected duration, expected
volume and variance of returns. The methodology was applied to two groups of
stocks, differing from each other according to their trade intensity. We found
significant evidence that the frequency with which the stock is traded is important in
determining its dynamic behavior. We found empirical evidence in favour of three
working hypotheses:
(1)
 All the stocks in the analysis exhibit a certain degree of trading clustering, the
degree being significantly higher for frequently traded stocks. This prediction is
in line with that of Foster and Viswanathan (1990), who claim that these
clustering effects should be stronger for firms with better public reporting and
more discretionary liquidity traders.
(2)
 The key intuition of Easley and O’Hara (1992) that times of greater activity
coincide with a higher fraction of informed traders present in the market is
confirmed only for the frequently traded stocks. Infrequently traded stocks seem
to be characterised by different information transmission mechanisms.
(3)
 In line with the predictions of Holden and Subrahmanyam (1992), we find that
more frequently traded stocks converge more rapidly (in calendar time) than the
infrequently traded stocks to their long-run equilibrium, after an initial
perturbation.
Regarding directions for future research, an interesting extension of the econometric
framework constructed in this paper is to incorporate depth and spread, by modeling
them in a similar way to volume and duration. By adding these two explanatory
variables to the model, one could get a clearer picture about the trading environment
of a specific market.

A second avenue for research, as discussed in footnote 6, would be to incorporate
the trade sign of Hasbrouck (1991) into the approach proposed in this paper.

A third interesting possibility is a systematic study that explores the relationship
between the characteristics of different markets and their dynamic properties. Many
market microstructure models show that prices eventually converge to full
information value, but provide very little insight into how long the adjustment
process might take. We believe that the impulse–response framework suggested in
this paper might prove a very valuable tool for this kind of analysis. For example,
one could compare the estimates of the model across market structures (electronic
versus specialist markets) or across different periods (crashes versus calm markets).
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