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abstract

This article provides a solution to the curse of dimensionality associated to
multivariate generalized autoregressive conditionally heteroskedastic (GARCH)
estimation. We work with univariate portfolio GARCH models and show how
the multivariate dimension of the portfolio allocation problem may be
recovered from the univariate approach. The main tool we use is ‘‘variance
sensitivity analysis,’’ the change in the portfolio variance induced by an
infinitesimal change in the portfolio allocation. We suggest a computationally
feasible method to find minimum variance portfolios and estimate full
variance-covariance matrices. An application to real data portfolios imple-
ments our methodology and compares its performance against that of
selected popular alternatives.
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Estimates of volatilities and correlations are used for pricing, asset allocation,

hedging purposes, and risk management in general. In today’s fast changing

financial world, it is essential that these measures are easy to understand and

implement. Since their introduction by Engle (1982), autoregressive condition-

ally heteroskedastic (ARCH) models have been used extensively both in aca-

demia and by practitioners to estimate the volatility of financial variables.
Many articles have been written on the subject, extending the original ARCH

model in many directions. The multivariate extension, however, has been met
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with many difficulties, mainly due to the fact that the number of parameters

that need to be estimated increases exponentially as one leaves the univariate

domain.

This article suggests looking at the multivariate problem from a different

perspective. The key idea is to work with univariate portfolio models and to

develop tools to recover the multivariate dimension that is lost in the univariate

estimation. This is accomplished by recognizing that the estimated univariate
portfolio variance is a function of the weights of the assets that form the portfolio.

By taking the derivatives of the variance with respect to these weights, it is

possible to obtain information about the local behavior (around the portfolio

weights) of the estimated variance.

Estimation of large multivariate generalized ARCH (GARCH) models is

notoriously challenging, requiring strong assumptions to make such estimation

feasible. For instance, the most general multivariate GARCH model, the

GARCH(1,1) vec representation introduced by Engle and Kroner (1995),
requires the estimation of 21 parameters to obtain the variance-covariance

matrix of just two assets. With 5 assets, there are 465 parameters to estimate,

and with 10 assets the number of parameters rises to 6105! Moreover, restric-

tions need to be imposed on the variance-covariance matrix to ensure its

positive definiteness. It is easy to argue that the high level of parameterization

and the assumptions on the structure of the variance-covariance matrix are

likely to increase the dangers of misspecification and poor performance of the

model.
On the other hand, the advantage of fitting variance models directly to

the time series of portfolio returns is that they indirectly incorporate any time-

varying correlation among the assets. This makes it possible to estimate

parsimonious models that summarize the relevant characteristics of the assets

entering the portfolio. This is done, for example, by McNeil and Frey (2000) to

calculate the value at risk (VaR) of the portfolio. Leaving aside for the

moment theoretical considerations, the main empirical drawback of this

approach is that the multivariate dimension of the portfolio allocation problem
is lost. Given the estimated variance of a portfolio, a risk manager would be

unable to determine how this variance changes as the portfolio composition

evolves, or to isolate the main sources of risk. It is not clear how to address

these issues in an univariate framework. In the following pages we suggest

the use of sensitivity measures to overcome this problem.

Recently measures of sensitivity to the weights of the portfolio allocation

have been proposed for VaR models. Garman (1996) suggested computing the

derivative of the VaR with respect to the individual components of the portfo-
lio, to assess the potential impact of a trade on a firm’s VaR. Gourieroux,

Laurent, and Scaillet (2000) study the theoretical implication of this exercise

on different VaR models. The same type of question can be asked with respect

to the variance of a portfolio. When a full variance-covariance matrix is avail-

able, this is a straightforward exercise. But when univariate portfolio variances

are estimated it is not obvious how to proceed.
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The main contribution of this article is to show how to perform variance

sensitivity analysis in the context of univariate GARCH models. We derive the

sensitivity of the univariate portfolio GARCH variance to the portfolio weights by

analytically computing the derivatives of the estimated GARCH variance with

respect to these weights. It is important to recognize that not only the portfolio

returns, but also the estimated parameters of the GARCH model are a function of

the weights. We show how a simple application of the implicit function theorem to
the first-order conditions of the log-likelihood maximization problem can be used

to overcome this obstacle.

Our sensitivity measure has many interesting practical applications. To

start with, risk managers might use the GARCH sensitivity analysis to test

whether their actual portfolio has minimum variance. Indeed, the minimum-

variance portfolio is characterized by having all first derivatives with respect to

the portfolio weights equal to zero. The GARCH sensitivity analysis could also

be used to evaluate the impact that each individual (or group of) asset has on
the portfolio variance. This would help risk managers to find out the major

sources of risk or allow them to evaluate the impact on the portfolio variance

of a certain transaction. A third application, proposed in this article, is a new

and computationally feasible method to find minimum-variance portfolios. We

show how an allocation problem with (nþ 1) assets can be solved by minimiz-

ing a well-behaved function of n variables, whose first and second derivatives

are related to the variance sensitivity of the portfolio. Moreover, by exploiting

the analytical relationship among variances, covariances, and the variance
derivatives with respect to the portfolio weights, we suggest a simple method

to estimate full variance-covariance matrices of large portfolios, which are

automatically guaranteed to be positive definite. The intuition is that once

the minimum-variance portfolio has been found, estimation of the variance-

covariance matrix is equivalent to finding the coefficients of a paraboloid with

vertex at the minimum variance portfolio and curvature equal to the second

derivatives of the portfolio variances.

The plan of the article is the following. Section 1 illustrates our methodology.
Section 2 shows how to employ variance sensitivity analysis to find minimum-

variance portfolios and estimate full variance-covariance matrices. Section 3 con-

tains an empirical application. Section 4 concludes.

1 VARIANCE SENSITIVITY ANALYSIS

In this section we show how to compute the derivative of the univariate GARCH

portfolio variance with respect to portfolio weights. From a pure theoretical

perspective, Nijman and Sentana (1996) have shown that GARCH processes are

not closed under contemporaneous (or cross-sectional) aggregation. More pre-
cisely, they show that a linear combination of variables generated by a

multivariate GARCH process will only be a weak GARCH process. Therefore

fitting GARCH processes directly to portfolio returns will generally result in

misspecified models. In this article we take a more naı̈ve approach and consider
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any GARCH model as only a rough approximation of the ‘‘true’’ relationship

among the observed data. Our results can nevertheless still be interpreted in the

‘‘quasi-maximum-likelihood’’ sense of White (1994). That is—for the chosen

parameterization—they provide the closest approximation (in terms of the

Kullback-Leibler information criterion) to the true DGP. We believe this to be a

reasonable working assumption (at least as reasonable as assuming that the

univariate GARCH processes are correctly specified and then deriving the
theoretical true GARCH relationship of the aggregated portfolios).

Changing the portfolio weights changes the time series of portfolio returns

and thus changes the information set used in the estimation of the univariate

GARCH model. As a consequence, the estimated variance is a function of the

portfolio weights, both through the vector of portfolio returns and through the

estimated parameters (which obviously depend on the time series of portfolio

returns used in estimation). Differentiation of portfolio returns with respect to

portfolio weights is straightforward. To differentiate the estimated parameters we
appeal to the implicit function theorem. The idea is that since the estimated

parameters must satisfy the first-order conditions of the log-likelihood maximiza-

tion problem, if certain continuity conditions are satisfied, the first-order condi-

tions define an implicit function between the estimated parameters and the

portfolio weights.

Let yt be the return of the portfolio composed by nþ 1 assets and let yt,i be the

ith asset return, for t¼ 1, . . . , T and i¼ 1, . . . ,nþ 1. Indicating the weight of asset

i by ai, the portfolio return at time t is yt ¼
Pnþ1

i¼1 aiyt;i. Note that since the weights ai
have to sum to one, we can write one weight as a function of the others,

anþ1 ¼ 1 �
Pn

i¼1ai.
Assume that yt is modeled as a zero-mean1 process with a GARCH(p, q)

conditional variance ht:

yt ¼
ffiffiffiffi
ht

p
«t «tjOt � ð0, 1Þ ð1Þ

ht ¼ z0tu, ð2Þ

where

zt

mx1
¼ ð1, y2

t�1, . . ., y
2
t�q, ht�1, . . ., ht�pÞ0, u

mx1
¼ ða0, a1, . . .,aq,b1, . . .,bpÞ0, and

m ¼ pþ qþ 1:

The information set of this model is Ot ¼ fa, ½yr;1�t�1
r¼1, . . ., ½yr;nþ1�t�1

r¼1g, where a
denotes the n-vector of portfolio weights.2 Note that the information set

1 The zero-mean assumption is made only for the sake of simplicity and implies no loss of generality.
2 The (nþ 1) weight is given by one minus the sum of the other weights. The corresponding (nþ 1) asset is

the pivotal asset against which the sensitivity analysis is performed. By changing the pivotal asset, one

obtains different sensitivity measures. Computing these sensitivity measures for each single asset of the

portfolio, it is possible to compute a matrix of sensitivities analogous to the variance-covariance matrix.
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includes the time series of the individual assets returns and that a change in the

vector of portfolio weights implies a change in the information set. Therefore, to

assess the potential impact of a trade on the estimated variance, one would have to

reestimate the whole model, given that a, and hence the information set, has

changed. The problem is that such a procedure would quickly become cumber-

some and impractical as the number of assets increases.

The potential effect of any change in the portfolio weights on the estimated
variance could be evaluated by simply computing the first derivative of the

variance with respect to the weights. A positive derivative would indicate that

the change will increase the variance of the portfolio and vice versa for a negative

derivative. Let ĥht ¼ ẑz0tûu be the estimated variance, where a hat (̂ ) above a variable

denotes that the variable is evaluated at the estimated parameter. In computing

the derivative of ĥht, one must recognize that not only the vector ẑzt, but also the

vector of estimated coefficients ûu, depends on a. By the product rule, the derivative

of ĥht with respect to a is given by

qĥht
qa
n�1

¼
qẑz0t
qa
n�m

ûu
m�1 þ

qûu0

qa
n�m

ẑzt
m�1 : ð3Þ

To achieve a clearer picture of the local behavior of the estimated variance

with respect to the portfolio allocation, one could determine its concavity by

computing the second derivative,

q2ĥht
qaqa0
n�n

¼
qẑz0t
qa
n�m

qûu
qa0
m�n

þ qûu0

qa
n�m

qẑzt
qa0
m�n

þ
�

u0
1�m

� In
n�n

�
n�mn

q
qa0

vec
qẑz0t
qa

� �
mn�n

þ

�
ẑz0t

1�m

� In
n�n

�
n�mn

q
qa0

vec
qûu0

qa

 !
mn�n

ð4Þ

where � denotes the Kronecker product and In is an (n � n) identity matrix.

To evaluate Equations (3) and (4), we need to compute qûu0
qa and q

qa0 vecðqûu
0

qaÞ,
the other terms being easily obtained. We compute these derivatives by applying

the implicit function theorem to the first-order conditions of the log-likelihood

maximization problem. The first-order conditions for Equations (1) and (2)
are:

T�1
XT
t¼1

qltðuÞ
qu

�����
u¼ûu

¼ 0, ð5Þ

where lt(�) is the time t component of the log-likelihood function. The following

theorem derives the analytical expressions for qûu0
qa and

q
qa0 vecðqûu

0

qaÞ.
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Theorem 1 Assume that lt(�) is continuously differentiable in a and u, and

define ÎIuu �T�1
PT

t¼1
q2ltðuÞ
ququ0

���
u¼ûu

and ÎIua �T�1
P

T
t¼1

q2ltðuÞ
quqa0

���
u¼ûu

. If ÎIuu is nonsingular, then

qûu0
qa
n�m

¼ �ð̂IIuaÞ0ð̂IIuuÞ�1

ð6Þ

q
qa0

vec
qûu0

qa

 !
mn�n

¼ � ð̂IIuuÞ�1 � qûu0

qa

" #
q
qa0

vecð̂IIuuÞ � ð̂IIuuÞ�1�n

h i q
qa0

vecð̂II0uaÞ ð7Þ

Proof Since the score is continuous and differentiable both in a and u, if ÎIuu is

nonsingular it is possible to apply the implicit function theorem to the first-order

conditions. The result follows. �

In Appendix B we provide the analytical derivation of Equations (6) and (7),

assuming that the standardized residuals are normally distributed—that is,
ltðuÞ ¼ � 1

2 lnðhtÞ � 1
2 y

2
t h

�1
t . Both ÎIuu and ÎIua can be easily derived analytically,

although the algebra might be messy. Note that ÎIuu is just the estimated Hessian

of the GARCH model. One may wonder how it is possible to compute the

sensitivity of GARCH variances from the simple series of portfolio returns. In

fact, Equations (3) and (4) and theorem 1 make use not only of portfolio returns,

but also of the returns of the individual assets entering the information set. We

illustrate this point with a simple example. Let yt¼ ayt,1þ (1� a)yt,2, where a and

(1� a) are the weights associated with assets 1 and 2, respectively. Suppose that
an ARCH(1) model is estimated, so that the parametric form of the estimated

variance is ĥht ¼ ûuy2
t�1.3 Then one can show that

ÎIua � ĥh�2
t ½y2

t�1ytðyt;1 � yt;2Þ þ 2y2
t yt�1ðyt�1;1 � yt�1;2Þ�: ð8Þ

Hence both Equations (3) and (4) and theorem 1 exploit not only the informa-

tion contained in fytgTt¼1, but also that contained in the individual series fyt;1gTt¼1

and fyt;2gTt¼1.

2 SENSITIVITY ANALYSIS AND ASSET ALLOCATION

The sensitivity analysis idea developed in the previous section can be used for
estimating large variance-covariance matrices and for optimal conditional port-

folio allocation in a mean-variance context. In this section we discuss how this can

be accomplished.

The typical portfolio allocation problem under Markovitz’s mean-variance

framework can be expressed as follows:

max
a

Et½uðytÞ� ¼ Et½yt� � kðvartðytÞ þ Et½yt�2Þ, ð9Þ

3 We left out the constant for the sake of simplicity.

MANGANELLI | Asset Allocation by Variance Sensitivity 375



where yt ¼
Pnþ1

i¼1 aiyt;i denotes the portfolio return at time t, a is the n-vector of

weights, and Et and vart denote, respectively, the conditional expectation and

conditional variance at time t, given the information set Ot.
4 This problem involves

maximizing a function of the conditional mean and the conditional variance with

respect to portfolio weights. The first-order conditions of this problem will

obviously depend on the derivatives of the conditional mean and the conditional

variance with respect to a. Any modeling choice of the conditional mean (includ-
ing a possible GARCH in mean component) can be easily incorporated into the

GARCH framework of Equations (1) and (2). The first and second derivatives of

the mean and the variance of the portfolio returns with respect to the weights can

therefore be derived from the corresponding likelihood using exactly the same

procedure described in Section 1. This implies that the maximization problem of

Equation (9) can be solved by simply maximizing a function of n variables (the

portfolio weights), of which we know the first and second derivatives. This is a

relatively straightforward task—provided that the function is sufficiently well
behaved—and does not involve the estimation of any variance-covariance matrix.

If the portfolio GARCH models were correctly specified, the function would be

quadratic in the weights, and the corresponding optimization process would be

trivial. In reality, as discussed at the beginning of Section 1, univariate portfolio

GARCH models are bound to be misspecified. The degree of misspecification, and

its impact on the shape of our function, is impossible to tell on pure theoretical

grounds. In the empirical application of Section 3, we find the degree of misspe-

cification to be relatively unimportant. Optimization for a portfolio of 30 assets is
extremely robust to the choice of the initial conditions, suggesting a sufficiently

well-behaved objective function. Obviously further research along these lines is

needed to tell how generally our procedure can be applied.

Sensitivity analysis can be used to estimate large variance-covariance matrices

as well. The procedure involves three simple steps:

Step 1. Minimize the portfolio variance with respect to the weights. This

is just a special case of Equation (9), when we set the conditional mean
equal to zero. For daily observations, this can be considered a reasonable

approximation.

Step 2. Compute the second derivatives of portfolio variance with

respect to the weights. In theory, second derivatives should be constant

and independent of the values of the weights at which they are

computed. In practice, this will not be the case because of the

misspecification of the GARCH(1,1) model applied to portfolios. One

possibility is to take averages of second derivatives computed for
different portfolio weights, or simply to take the second derivative

corresponding to the minimum-variance portfolio computed in Step 1.

4 As usual, we assume that the weights sum to one: anþ1 ¼ 1 �
Pn

i¼1ai.
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Step 3. Define w¼ [a0, 1� i0a]0 as the (nþ 1)-vector of weights correspond-

ing to each asset entering the portfolio, where i is an n-vector of ones.

Compute the variance-covariance matrix (�t) as the solution to the

following system:

ðiÞ w�0�tw� ¼ htða�Þ

ðiiÞ qw0�tw

qa

���
a¼a�

¼ 0

ðiiiÞ
�
q2w0�tw

qaqa0

����
a¼a�

¼ Kt,

where Kt is an (n � n) matrix containing the estimated second derivatives

and a*, w* are the optimal weights associated to the minimum-variance

portfolio found in Step 1.

Note that �t has a total of (nþ 2)(nþ 1)/2 parameters to be estimated. Condition (i)

gives one parameter, condition (ii) n parameters, and conditions (iii) n(nþ 1)/2

parameters, for a total of exactly (nþ 2)(nþ 1)/2 parameters. Note also that the

solution to conditions (i)–(iii) gives the coefficients of a paraboloid with vertex

corresponding to the minimum-variance portfolio and curvature Kt. This implies,

since the minimum variance is strictly positive, that the estimated variance-covariance

matrix is automatically positive definite. To see this, consider the generic quad-
ratic form w0�̂�tw, where �̂�t has been estimated with the above procedure and

w0
�
i

1

�
¼ 1 . By conditions (ii) and (iii), this quadratic form achieves a minimum at

w¼w*, and condition (i) ensures that this minimum is strictly positive. It follows

that w0�̂�tw> 0 for any w.

It is straightforward to find an analytical solution to the above system. Parti-

tion �t as follows: �t ¼
At bt
b0t ct

��
, where At is (n� n), bt is (n� 1), and ct is a scalar.

Then

w0�tw ¼ ½a0, 1 � i0a�
�
At bt

b0t ct

��
a

1 � i0a

�
¼ a0ðAt � ib0t � bti

0 þ ctii
0Þaþ 2ðb0t � cti

0Þaþ ct: ð10Þ
Therefore, we have

qw0�tw

qa
¼ 2ðAt � ib0t � bti

0 þ ctii
0Þaþ 2ðbt � ctiÞ ð11Þ

q2w0�tw

qaqa0
¼ 2ðAt � ib0t � bti

0 þ ctii
0Þ: ð12Þ

Combining these relationships with conditions (i)–(iii), simple calculations give

At ¼ 0:5Kt þ htða�Þii0 þ 0:5a�0Kta
�ii0 � 0:5ia�0Kt � 0:5Kta

�0i ð13Þ

bt ¼ htða�Þiþ 0:5a�0Kta
�i� 0:5Kta

� ð14Þ
ct ¼ htða�Þ þ 0:5a�0Kta

�, ð15Þ

which completely determine the variance-covariance matrix at time t.
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3 EMPIRICAL APPLICATION

In this section we implement our methodology on a selected sample of stocks. We

first estimate the sensitivity of GARCH variances on a two-stock portfolio, as

described in Section 1. Then we find the minimum-variance portfolios for five

different portfolios using the methodology outlined in Section 2, and compare its

performance to that of a few popular alternatives (namely, dynamic conditional

correlation, orthogonal GARCH, and exponentially weighted moving average).

3.1 Sensitivity of GARCH Variance

We estimate the first and second derivatives of GARCH variances as described in

Section 1, using a two-asset portfolio composed of General Motors (GM) and IBM.

Daily data are taken from Bloomberg and run from January 2, 1992, through

March 11, 2002.

We estimate univariate GARCH(1,1) models for 31 portfolios constructed

from these two assets, with the GM weight (a) ranging from �1 to 2, with incre-

ments of 0.1. For each estimated GARCH model we compute the first and second
derivatives of the estimated variance with respect to the weight a.

In Figure 1 we plot the estimated variances on March 11, 2002, for the

31 portfolios as a function of the weight, together with their first and second

derivatives. Note that the variance corresponding to a¼ 0 is the variance of IBM,

while the variance corresponding to a¼ 1 is the variance of GM. The portfolios

with a weight greater than one or less than zero are short on IBM or GM,

respectively. The estimated variance plotted in Figure 1 is a parabolic and convex

function of the portfolio weights a, suggesting that diversification produces

23
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Figure 1 Plot of estimated variance, first and second derivative on March 11, 2002, for
31 portfolios constructed from GM and IBM. On the horizontal axis is the portfolio weight for
GM, which ranges from �1 to 2, with increments of 0.1. The variance is computed by reestimating
a GARCH(1,1) model for each of the 31 portfolios. The first and second derivatives are computed
analytically, as described in Section 1.
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significant gains in terms of risk reduction. If the true variance-covariance matrix

were available and one computes the portfolio variances as a weighted sum of the

individual asset variances and covariances, this function would be exactly a

parabola. The fact that fitting univariate GARCH models to the time series of

portfolios produces results very close to those one would expect in theory indi-

cates that these univariate GARCH models provide a reasonable approximation of

the true (but unknown) model. This intuition is confirmed by the shape of the first
and second derivatives. If the function were truly a parabola, then the first

derivative would be a straight, positively sloped line and the second derivative

a flat line. The plots in Figure 1 show that both the first and second derivatives are

very close to their theoretical shape.

In Figure 2 we show the time series of the first derivatives of the estimated

variance, qĥhtðaÞ
qa , for the two degenerate portfolios, that is, for IBM (a¼ 0) and GM

(a¼ 1). The picture indicates by how much the variance would decrease or

increase over time if one diversifies away from the portfolios composed of only
GM or IBM. Similar pictures can be drawn for any portfolio weight, thus giving

the risk manager a precise indication about the consequences—in terms of risk—of

changing the composition of the current portfolio.

A second interesting feature of Figure 2 is that the first derivative is always

positive for GM and almost always negative for IBM. This implies that the

minimum-variance portfolio during the period considered in this analysis was

formed by a convex combination of these two assets. The fact that for a few days

GM
IBM

30

20

10

0

-10

-20

-30

-40

-50

-60
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Figure 2 Plot of the first derivative of the estimated variance for the two degenerate portfolios of
GM and IBM. The first derivative indicates by how much the variance would increase or decrease
over time if one increases the weight of GM (a) in the portfolio. In the case where the portfolio is
composed of only GM (a ¼ 1), buying an extra share of GM and going short on IBM will increase
the overall portfolio variance (upper line). Vice versa, diversifying away from a portfolio
composed of only IBM (a ¼ 0) would decrease the variance (bottom line).
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toward the end of the sample both first derivatives were positive signals that
during those days the risk manager would have had to short GM to construct the

minimum-variance portfolio.

Figure 2 also provides insight into the major sources of risk in a portfolio.

Indeed, the greater (in absolute value) the first derivative, the greater the risk

reduction following a portfolio reallocation. Figure 2 shows that the first deriva-

tive of the portfolio containing only the IBM asset is much higher on average (in

absolute value) than the first derivative corresponding to the GM portfolio.5 This

implies that during the 1990s an investor could achieve greater variance reduction
by diversifying away from the portfolio with only IBM (the ‘‘new economy’’ stock)

than from the GM portfolio (the ‘‘old economy’’ stock). In the case of a portfolio

with more than two assets, one could compute the variance sensitivity corre-

sponding to each asset and gain in this way an insight about the major sources

of risk in the portfolio. In order to reduce the risk, the risk manager should sell the

assets with the highest first derivative and buy those with the lowest one.

In Figure 3 we report the time series of the second derivatives for GM,

together with its difference from the average second derivatives computed over
all the 31 portfolios considered in this exercise. In theory, for a correctly specified

model, the second derivative should not depend on the portfolio composition:

when plotted against the portfolio weights at any given point in time, it should be

45

40

35
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25

20

15
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5

0

-5
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

GM
average-GM

Figure 3 Plot of the estimated second derivatives, computed from the degenerate GM portfolio
(upper graph) and its difference w.r.t. the average second derivatives of 31 different portfolios
(lower graph). Under correct model specification, the second derivative should not depend on the
portfolio weight. Hence the lower graph should be exactly equal to zero. The fact that the dotted
line hovers mostly around zero confirms the results obtained in Figure 1, that is, the GARCH(1,1)
model provides a reasonable approximation of the portfolio variance process.

5 The average first derivative for IBM is �7.86 and for GM is 6.26. That is, the variance sensitivity of the

portfolio containing only IBM was about 25% higher than that of the GM portfolio.
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a flat line. Therefore the difference between the average second derivatives and

that of GM should be zero. Consistent with the findings of Figure 1, this difference

is hovering around zero throughout the sample, thus providing further evidence

that portfolio univariate GARCH models provide a good approximation of the

true variance. The difference is not exactly zero because, as we noted in Section 1,

univariate GARCH models are surely misspecified.

The second derivative, being the slope of the first derivative, tells the risk
manager by how much the variance sensitivity will change after a change in the

portfolio allocation. The greater the magnitude of the second derivative, the

greater the change in the variance sensitivity, implying that a smaller portfolio

reallocation will be necessary to achieve a given size of variance reduction.

Figure 3 shows that in the last couple of years portfolio reallocations had a

much greater impact on variance than during the 1990s. The average of the second

derivative was 12.36 between 1992 and 1999, rising to 17.17 from 1999 to 2002. In

other words, these results show that the concavity of the portfolio variance (as a
function of weight a) has increased dramatically over the past few years for GM

and IBM. This has obviously important consequences for managing the risk of a

portfolio composed of these two assets.

3.2 Minimum-Variance Portfolio Allocation

In this subsection we implement the methodology described in Section 2 to find

the allocation minimizing the portfolio variance. We tested our methodology on

different subsamples of the Dow Jones index, with the same time span as before,

that is, from January 2, 1992, through March 11, 2002.
We compare the performance of our methodology with three alternative

multivariate models: dynamic conditional correlation (DCC), Orthogonal

GARCH (OGARCH), and exponentially weighted moving average (EWMA).

These are some of the most popular methods used in the industry to estimate

large variance-covariance matrices.6 The DCC model was recently proposed by

Engle and Sheppard (2001) and Engle (2002). This model can be seen as a general-

ization of the constant conditional correlation model, originally proposed by

Bollerslev (1990). In the DCC model, conditional correlations are directly para-
meterized rather than assumed constant. Engle (2002) shows that the estimation of

the multivariate model can be drastically simplified by using a two-step proce-

dure. First, the univariate GARCH models are estimated for each of the assets.

Then the conditional correlation specification is fitted to the standardized resi-

duals obtained in the first step. In the simplest mean-reverting model proposed by

Engle (2002)—which is the one we estimate in our empirical application—the

same pair of parameters is estimated for all the correlations considered (implying

that all correlations have the same degree of persistence). More parameterized
models can be used, at the cost, however, of increasing the computational burden.

6 Ledoit, Santa-Clara, and Wolf (2003) and Brandt and Diebold (2004) provide two interesting alternative

strategies to variance-covariance matrix estimation that will not be discussed here.
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Alexander (2000) proposed the OGARCH model, based on a principal com-

ponent GARCH methodology. First, she constructs unconditionally uncorrelated

factors, which are linear combinations of the original returns. Then she fits uni-

variate GARCH models to the principal components. Since the conditional

variance-covariance matrix of the principal component series is diagonal (i.e.,

conditional correlations are zero), it is possible to recover the original assets’

variance-covariance matrix through a fixed mapping matrix.
The last method we consider is the EWMA, popularized by RiskMetrics. With

this method, the variance-covariance matrix at time t is simply computed as a

convex combination of the variance-covariance matrix in the previous period,

t� 1, and the matrix of squared and cross-product lagged returns. The weight is

usually set equal to 0.94 or 0.97. In the following application we set the decay

coefficient for the EWMA equal to 0.94.

For these three methods we first estimate the variance-covariance matrix as of

March 11, 2002. Then we analytically compute the weights that give the minimum-
variance portfolio. If the variance-covariance matrix is partitioned as in

Equation (10), then the optimal weights can be found by setting Equation (11)

equal to zero, giving

a� ¼ ðÂAt � ib̂b0t � b̂bti
0 þ ĉctii

0Þ�1ðĉcti� b̂btÞ: ð16Þ

Finally, we estimate the univariate GARCH variance associated to this port-

folio and report the annualized estimated volatility in Table 1.7 We repeat this

procedure for each model under consideration and for five different portfolios
with 2, 5, 10, 20, and 30 assets, respectively.8

The variance sensitivity analysis (VSA) model is estimated by minimizing

directly the univariate GARCH variance with respect to portfolio weights. We use

the function fminunc in Matlab, providing as input the first and second analytical

derivatives computed in Section 1. Convergence is very rapid and very robust to

the choice of the initial conditions.9 This suggests that the objective function is well

behaved even for high-dimensional problems. To produce the results in Table 1,

we chose as initial conditions of the VSA model the optimal weights of EWMA.
Since the VSA method is designed to find the minimum-variance portfolio as

measured by univariate GARCH, it is not surprising that it outperforms all the

other models. What is more interesting is that the outperformance (as measured

by the percentage difference in annualized volatility) increases with the number of

assets. While with a two-asset portfolio the differences in the minimum variances

are negligible, these differences rise monotonically with the number of assets for

the DCC and OGARCH methods. With five assets, DCC and OGARCH over-

estimate the minimum-variance portfolio by about 7%. With 10 assets, the differ-
ence rises to 10% and 18%, respectively, while with 20 and 30 assets it ranges from

7 Annualized volatility is given by the square root of (252* daily variance).
8 Assets are progressively aggregated in the order reported in Appendix A.
9 Convergence for a 30-asset portfolio occurs in less than 15 iterations for randomly chosen initial

conditions.
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23% to almost 40%. Clearly this is an indication that as the number of assets

increases, the restrictions imposed by the standard multivariate GARCH models

become more and more binding.

A different picture emerges from the results of the EWMA. Its performance

does not seem to deteriorate as much and as fast as the other two competing

models. Although surprising at first sight, this result is due to the way EWMA

estimates are constructed. Using the same decay coefficient l for all variance and
covariance terms is equivalent to estimating directly the EWMA portfolio variance

with coefficient l. If the estimated coefficients of the GARCH(1,1) model applied

to the minimum EWMA variance portfolio are not too different from the chosen l,

one would expect good performance from this model—whenever performance is

measured by minimum variance. Notice, however, that this does not imply that

EWMA produces reasonable estimates of the variance-covariance matrix. As we

illustrated in Section 2, estimation of variance-covariance matrices is equivalent to

finding the coefficients of a paraboloid with given vertex and curvature. Even if
the vertex provided by EWMA is close to the true one, there is no guarantee that

the same holds for the curvature.

A final aspect worth noticing is that the computation time of VSA does not

seem to rise too much with the number of assets.10 A 30-asset portfolio is opti-

mized by VSA in less than 8 minutes on a standard Pentium IV computer.

Computational feasibility seems to be a further attractive feature of the methodo-

logy proposed in this article.

4 CONCLUSION

Fitting variance models directly to the time series of portfolio returns has many

advantages, such as the possibility of estimating parsimonious models and com-

putational tractability. The problem of this strategy is that the multivariate dimen-

sion of the portfolio allocation is lost. This article suggests a strategy to overcome

this problem, working within a GARCH framework. We assess the potential

impact of a trade on the estimated variance by computing the sensitivity of the

estimated variance with respect to the weight of the asset involved in the trade.

This sensitivity measure is simply the derivative of the estimated variance with
respect to portfolio weights. As a by-product of this analysis, we propose a new and

simple method to estimate full variance-covariance matrices, which exploits the

analytical relationship among variances, covariances, and sensitivity measures.

We illustrate the functioning and the performance of our methodology with

two empirical applications. In the first one we estimate the variance sensitivity for

a portfolio of two assets. We document how this sensitivity has been changing

over time and stress its implications for risk management. We also compute the

second derivative of the estimated variance with respect to portfolio weights. We

10 Computation time of VSA actually decreases when moving from portfolios with 5 assets to portfolios

with 10 assets. This result, however, is probably due to the quality of the initial conditions fed to the

optimization algorithm.
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argue that this measure gives an indication of the diversification opportunities at

any given point in time: the higher the second derivative, the greater the gains (in

terms of variance reduction) from a proper diversification strategy.

In the second application we implement the suggested methodology to find

minimum variance portfolios at any given point in time. We test the model with

five subsamples of the Dow Jones index. We evaluate the performance of our

methodology against that of popular alternatives, including the DCC, the
OGARCH, and the EWMA models. Our findings suggest that our methodology

generally leads to considerable efficiency gains.

APPENDIX A

Table A.1 List of stocks used in the analysis

Ticker Name

1 AA Alcoa Inc.

2 AXP American Express Co.

3 T AT&T Corp.

4 BA Boeing Co.

5 CAT Caterpillar Inc.

6 C Citigroup Inc.

7 KO Coca-Cola Co.

8 DIS Walt Disney Co.

9 DD E.I. DuPont de Nemours & Co.

10 EK Eastman Kodak Co.

11 XOM Exxon Mobil Corp.

12 GE General Electric Co.

13 GM General Motors Corp.

14 HPQ Hewlett-Packard Co.

15 HD Home Depot Inc.

16 HON Honeywell International Inc.

17 INTC Intel Corp.

18 IBM International Business Machines Corp.

19 IP International Paper Co.

20 JNJ Johnson & Johnson

21 JPM J.P. Morgan Chase & Co.

22 MCD McDonald’s Corp.

23 MRK Merck & Co.

24 MSFT Microsoft Corp.

25 MMM 3M Co.

26 MO Altria Group Inc.

27 PG Procter & Gamble

28 SBC SBC Communications Inc.

29 UTX United Technologies Corp.

30 WMT Wal-Mart Stores Inc.

These were the 30 stocks composing the Dow Jones Industrial Average index as of March 11, 2002.
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APPENDIX B: COMPUTATION OF FIRST AND SECOND DERIVATIVES
UNDER NORMAL LIKELIHOOD FOR A GARCH(1,1) MODEL

We follow the conventions and rules on matrix differentiation, as in

Appendix A.13 of Lütkepohl (1990). We indicate the explicit dependence of u on

a by u(a). Whenever this dependence is not made explicit, it means that we treat u

as not depending on a. We derive the analytical expressions of Equations (3) and

(4), under the assumption of a normal likelihood. Rewrite Equation (3), making
explicit the dependence on a:

qhtðuðaÞÞ
qa

¼ qztðuðaÞÞ0

qa
uþ quðaÞ0

qa
zt, ðA:1Þ

where qztðuðaÞÞ0
qa ¼

h
0ðn�1Þ

qY2
t�1

qa
qht�1ðuðaÞÞ

qa

i
, qht�1ðuðaÞÞ

qa can be computed recursively,

qY2
t�1

qa ¼ 2Yt�1ðyt�1nnþ1 � iyt�1;nþ1Þ, i is an (n, 1)-vector of ones, and ytnnþ1¼
[yt,1, . . . , yt,n]0. To compute quðaÞ0

qa we apply Theorem 1, under the assumption that

lt ¼ �0:5½lnðhtÞ þ Y2
t h

�1
t �. The score is

qlt
qu

¼ �0:5
qht
qu

H, ðA:2Þ

where H � ðh�1
t � Y2

t h
�2
t Þ, qht

qu ¼ zt þ qz0t
qu u, and

qz0t
qu ¼

	
0ð3�2Þ

qht�1

qu



. Therefore

q2lt
ququ0

¼ �0:5
qht
qu

qH
qu0

þH
q2ht
ququ0

� �
, ðA:3Þ

where qH
qu0 ¼

qht
qu0

~HH, ~HH � � h�2
t þ 2Y2

t h
�3
t , q2ht

ququ0 ¼
qzt
qu0 þ

qz0t
qu þðu0 � I3Þ q

qu0 vec
�

qz0t
qu

�
and

q
qu0 vec

�
qz0t
qu

�
¼
"

0ð6�3Þ
q2ht�1

ququ0

#
;

q2lt
quqa0

¼ �0:5
qht
qu

qH
qa0

þH
q2ht
quqa0

� �
, ðA:4Þ

where qH
qa0 ¼

qht
qa0

~HH � h�2
t

qY2
t

qa0 ,
qht
qa0 ¼ u0 qztqa0,

qzt
qa0 ¼

0ð1�nÞ
qY2

t�1

qa0
qht�1

qa0

2
64

3
75, q2ht

quqa0 ¼
qzt
qa0 þ

ðu0 � I3Þ q
qa0 vec

qz0t
qu

� �
, and q

qa0 vec
qz0t
qu

� �
¼

0ð6�nÞ
q2ht�1

quqa0

" #
.

The second derivative is given by Equation (4):

q2htðuðaÞÞ
qaqa0

¼ qztðuðaÞÞ0

qa
quðaÞ
qa0

þquðaÞ0

qa
qztðuðaÞÞ

qa0

þ ðu0 � InÞ
q
qa0

vec
qztðuðaÞÞ0

qa

� �
þðztðuðaÞÞ0 � InÞ

q
qa0

vec
quðaÞ0

qa

� �
,

ðA:5Þ
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where q
qa0 vec

�
qztðuðaÞÞ0

qa

�
¼

0ðn�nÞ
q2Y2

t�1
qaqa0

q2ht�1ðuðaÞÞ
qaqa0

2
64

3
75,

qY2
t�1

qaqa0 ¼2ðyt�1nnþ1� iyt�1;nþ1Þ,ðyt�1nnþ1�

iyt�1;nþ1Þ0, and q2ht�1ðuðaÞÞ
qaqa0 can be computed recursively. To compute

q
qa0 vec quðaÞ0

qa

� �
, we again apply Theorem 1 and note that, if A is a (p, p) symmetric

nonsingular matrix, qvecðA�1Þ
qa0 ¼�ðA�1�A�1ÞqvecðAÞ

qa0 :

q
qa0

vec
quðaÞ0

qa

� �
¼� ðIuuÞ�1�quðaÞ0

qa

� �
q
qa0

vec½IuuðuðaÞÞ�

�½ðIuuÞ�1� In�
q
qa0

vec½I0uaðuðaÞÞ�: ðA:6Þ

We compute the individual components of q
qa0 vec½IuuðuðaÞÞ� and q

qa0 vec½I0uaðuðaÞÞ�,
in turn:

q
qa0

vec
q2lt
ququ0

ðuðaÞÞ
� �

¼�0:5

(�
I3�

qht
qu

� q
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�qH
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þ
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, ðA:7Þ

where

	 q
qa0 ð

qht
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t

qu ðuðaÞÞ��, where K3,3 is the commutation

matrix [see Lütkepohl (1990: 466)]

	 q
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0ðI3 �uÞ� ¼ ðI3 �G0Þ q
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It remains to compute q
qa0 vecbI0uaðuðaÞÞc in Equation (A.6):

q
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